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We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron
laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output
radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and Yurkov[The
Physics of Free Electron Lasers(Springer-Verlag, Berlin, 2000)], we find that the model provides a good
description of the average intensity, field correlation function, and coherence time, but underestimates the
intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.
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I. INTRODUCTION

The self-amplified spontaneous-emission free-electron la-
ser(SASE FEL) starts up from the shot noise in the electron
beam[1–4]. The output is narrow-band chaotic radiation and
requires a statistical description. In the linear region of ex-
ponential growth[1–7] before saturation, the statistics are
determined from the Central Limit Theorem[1,4]. In the
nonlinear saturation region, the statistics are not so easily
described. A comprehensive and illuminating study[1] of the
nonlinear statistics was carried out by numerical solution of
the time-dependent FEL equations. In this paper, we consider
a simplified model for the nonlinear stochastic SASE field
and compare its predictions with the results of Ref.[1]. In
this model, the statistical properties of the nonlinear field are
expressed in terms of those of the linear field. The model
provides a good description of the average intensity, field
correlation function, and coherence time, but it underesti-
mates the intensity fluctuation. Asymmetric spectral broad-
ening phenomena are not included in the model.

Ignoring the transverse dependence, the SASE electric
field can be expressed in the form

Esz,td = Asz,tdexpsikr z− ivr td , s1.1d

wherez represents the location along the undulator at which
the SASE is observed andt represents the temporal position
in the radiation pulse. For an undulator with periodlu
=2p /ku and magnetic field strength parameterK, the reso-
nant frequency is

vr = kr c =
2kucg 2

1 + K2/2
. s1.2d

In the linear region before saturation, the SASE power in-
creases exponentially[1–7] and the slowly varying ampli-
tude can be approximated by[2,3]

ALsz,td = A0szdo
j=1

Ne

expFivr t j −
st − tj − z /ngd2

4s t
2 S1 +

i

Î3
DG .

s1.3d

Here,Ne is the total number of electrons in the bunch,A0szd
contains the exponential growth factor, 0ø tj øTb is the ran-

dom arrival time of thej th electron,cTb is the electron bunch
length, andng is the group velocity of each wave packet. The
characteristic wave packet widthst=1/sÎ3svd, where sv

=vr
Î3Î3r /kuz is the SASE bandwidth[2,3] andr the FEL

parameter[7]. The coherence time[1,4] is Tcoh=Îp/sv

=Î3pst. In this paper, we are considering a flat-top electron
bunch with durationTb@Tcoh, and we use the dimensionless
distanceZ=2rkuz, time t=2rfskr +kudz−vrtg, and amplitude
A;E/Îrn0g0mc2/«0 smks unitsd, where n0 is the electron
density andg0 the electron energy in units of the rest mass.

In the case of a monochromatic input wave(Sec. II), the
amplified output field has the form[8]

AsZd > ALsZdhfuALsZdu2g sZ @ 1d, s1.4d

where

ALsZd =
1

3
As0dexpFSÎ3

2
+

i

2
DZG s1.5d

is the solution to the linearized single frequency equations.
The initial value of the radiation field is assumed to be small,
i.e., As0d!1.

In this paper, we introduce a simplified model(Sec. III)
for SASE saturation by considering an ansatz for the nonlin-
ear radiation field, expressing it in terms of the linear SASE
field via

AsZ,td > ALsZ,tdhfuALsZ,tdu2g sZ @ 1d, s1.6d

whereALsZ,td is the linear approximation(1.3) to the SASE
amplitude. The functionhsjd is that appearing in Eq.(1.4)
and it can be evaluated by direct numerical integration of the
single frequency FEL equations(see Sec. II). The model
SASE intensity is

uAsZ,tdu2 > IfuALsZ,tdu2g sZ @ 1d, s1.7d

whereIsjd=j uhsjdu2. From Eqs.(1.6) and(1.7), the statistical
properties of the nonlinear SASE field can be determined in
terms of the known statistical properties[1,4] of the linear
approximationALsZ,td.

Whereas the scaling relation(1.4) for amplification of a
monochromatic wave is a precise asymptotic relation for
large Z, the ansatz(1.6) for SASE relies on an additional
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approximation of limited validity. Slippage is taken into ac-
count in the linear approximationALsZ,td, but not in the
functionhsjd describing saturation. Some justification for us-
ing our model to describe the initial saturation process is as
follows: Early in saturation, the SASE pulse is comprised of
temporal spikes[9] having widths equal to a few cooperation
lengths slr /4prd. The field amplitude at this point is still
accurately described by the linear approximation. As the
electrons travel several more gain lengths down the undula-
tor, the additional slippage is on the order of the coherence
length, so that the energy transfer between the electrons and
field may take place in a manner similar to the steady state
case, and the ansatz(1.6) can provide a useful description.
However, as the electrons continue further along the undula-
tor, the slippage exceeds the original coherence length and
the model can be expected to lose validity.

II. AMPLIFICATION OF THE MONOCHROMATIC WAVE

The scaled equations[7] for the evolution of a one-
dimensional electron distribution and a monochromatic ra-
diation field are

du j

dZ
= pj , s2.1d

dpj

dZ
= − Aeiu j − A*e−iu j , s2.2d

dA

dZ
= ke−iu jl , s2.3d

whereu j =skr +kwdz−vrt jszd is the phase of thej th electron
relative to the radiation andpj =sg−g0d /rg0 is its (scaled)
energy deviation. The bracket represents an average over the
electron phases in the interval 0øu j ø2p.

We have shown[8] (see Appendix A) that the solution to
Eqs.(2.1)–(2.3) can be expressed in the form

AsZd > ALsZdhfuALsZdu2g sZ @ 1d, s2.4d

where

ALsZd =
1

3
As0dexpFSÎ3

2
+

i

2
DZG s2.5d

is the solution to the linearized single-frequency FEL equa-
tions. Equation(2.4) is valid as long as the initial value of
the radiation field is small,As0d!1. The radiation intensity
is given by

uAs«,Zdu2 > Isjd ; juhsjdu2 sZ @ 1d, s2.6d

where

j ;
1

9
As0d2 eÎ3Z. s2.7d

It follows from Eq. (2.6) that for largeZ, the intensity
does not depend onAs0d andZ independently, but only in the
combination specified in Eq.(2.7). Therefore, a change in the
initial value of the radiation fieldfAs0dg corresponds to a
translation inZ. The validity of this scaling is demonstrated
in Fig. 1, where we plot the intensity determined from the
numerical solution of the FEL Eqs.(2.1)–(2.3) for two initial
conditionsAs0d= .0003 andAs0d= .003. The equations were
solved numerically usingMATHEMATICA with 1000 electrons,
initially equally spaced in phase in the interval 0øu j ø2p. It
is seen that once the exponential gain has been established,
the two intensities differ only by a translation inZ by Z1
−Z2=s2/Î3dlnfA2s0d /A1s0dg=2.658.

The functionhsjd can be evaluated by direct numerical
integration of the single frequency equations. LetAsfsZd be
the solution of Eqs.(2.1)–(2.3) for the initial condition
Asfs0d=«sf. It follows that Îj hsjd=AsffZ0sjdg
3expf−iZ0sjd /2g, with Z0sjd=fln j+lns9/«sf

2 dg /Î3. In Fig.
2, we plot the magnitude and phase of the functionh.

III. MODEL FOR NONLINEAR SASE STATISTICS

The simplified model for SASE saturation is defined by
the ansatz for the nonlinear radiation field

AsZ,td > ALsZ,tdhfuALsZ,tdu2g sZ @ 1d, s3.1d

whereALsZ,td is the linear approximation(1.3) to the SASE
amplitude. The functionhsjd is that presented in Fig. 2, de-
termined by direct numerical integration of the single fre-
quency FEL equations. The model SASE intensity is

FIG. 1. (a) The dimensionless intensityuAsZdu2, as computed from the numerical solution of Eqs.(2.1)–(2.3) for the two initial conditions:
As0d= .003(solid) andAs0d= .0003(dashed), versus the dimensionless distanceZ. (b) The solid curve in(a) has been translated to the right
by DZ=2.658 and now lies precisely over the dashed curve, as predicted by the scaling relation of Eq.(2.4).
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uAsZ,tdu2 > IfuALsZ,tdu2g sZ @ 1d, s3.2d

whereIsjd is defined in Eq.(2.6) and can also be evaluated
by integrating the single frequency FEL equations. From
Eqs.(3.1) and(3.2), the statistical properties of the nonlinear
SASE field can be determined in terms of the known statis-
tical properties[1,4] of the linear approximationALsZ,td.

Within the linear approximation, the field correlation is
given by

kALsZ,t1dAL
* sZ,t2dl > iavsZdexpF− pst1 − t2d2

2t c
2sZd G ,

s3.3d

where

iavsZd = kuAsZ,tdu2l >
expsÎ3Zd

9Î2 NctcsZd
s3.4d

is the average intensity and

tcsZd = Î2pZ/s3Î3d s3.5d

the coherence time.Nc is the number of electrons in a coop-
eration lengthlr /4pr. The bracketsk l represent the average
over the electron arrival times(shot noise).

Since the SASE intensity in the linear regime is described
by the exponential distribution[1], s1/kIldexps−I / kIld, we
can use Eq.(3.2) to express the average of thenth power of
the nonlinear SASE intensity in the form

kuAsZ,tdu2nl =E dQexps− QdInfQiavsZdg. s3.6d

The intensity fluctuation is given by

sI
2sZd =

kuAsZ,tdu4l − kuAsZ,tdu2l2

kuAsZ,tdu2l2 . s3.7d

In Fig. 3, we plot the average intensitykuAsZ,tdu2l versus
Z, as determined from Eq.(3.6). In this figure and those that
follow, we have chosen the number of electrons in a coop-
eration length to beNc=1.53107. In Ref. [1], the definition
of Nc is twice ours; hence, ourNc=1.53107 corresponds to
their choice ofNc=33107. The intensity, shown as the solid
curve in Fig. 1, is in good agreement with Fig. 6.13 of Ref.
[1] out to aboutZ=14. After this point, their simulations are
dominated by spectral broadening phenomena not included
in the simplified model. The slight shift of our result to larger
Z as compared with the result of Ref.[1], may be due to a
difference in the treatment of shot noise in our analytic ap-
proximation and their numerical simulation. The intensity
fluctuationsIsZd is presented in Fig. 4. There is significant
disagreement in the results. The fluctuation at the intensity
maximum(at Z=13) is about 25%, which is one-half of the
value determined in the simulations(Fig. 6.15 of Ref.[1]).
This is due to a limitation of our approximation, which will
be discussed in more detail later.

FIG. 2. We plot(a) the magnitude and(b) the
phase of the scaling functionhsjd versusj. In
order to show the behavior over a wider domain,
we plot (c) Îj uhsjdu and (d) argfhsjdg versus the
natural logsjd.

FIG. 3. The average dimensionless SASE intensity I(solid) as
calculated from Eq.(3.6) with n=1. The stars represent values of
the intensity read from Fig. 6.13 of Ref.[1].

FIG. 4. The intensity fluctuationsI (solid) as determined from
Eq. (3.7), plotted versus the dimensionless distanceZ traveled along
the undulator. The stars represent values of the fluctuation read from
Fig. 6.15 of Ref.[1].
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The radiation field correlation function is given by(see
Appendix B)

kAsZ,tadA*sZ,tbdl
; kuAsZ,0du2lg1sZ,ta − tbd

=E dQadQbP1sQa,Qb,Z,ta − tbd

3ÎQaiansZdQbiavsZdhfQaiavsZdgh*fQbiavsZdg , s3.8d

where

P1sQa,Qb;Z,ta − tbd =

expS − Qa

1 − bab
DexpS − Qb

1 − bab
D

1 − bab

3I1S2ÎbabQaQb

1 − bab
D , s3.9d

bab ;
kuALsZ,tadu2uALsZ,tbdu2l

kuALsZ,tadu2lkuALsZ,tbdu2l − 1 > expF− psta − tbd2

t c
2sZd G .

s3.10d

The integrand in Eq.(3.8) is symmetric inQa andQb, hence
the model field correlation is real, whereas the precise result
is a complex quantity. In Fig. 5, we show the field correlation
before and during saturation. Our results are seen to agree
with Figs. 6.16 and 6.17 of Ref.[1] upon noting that our
definition of the scaled timet is twice theirs.

Knowledge of the field correlation enables us to compute
the coherence time[1] defined by

tcohsZd ; E
−`

`

dtug1sZ,tdu2. s3.11d

The coherence time is plotted in Fig. 6. The results are seen
to be in good agreement with Fig. 6.20 of Ref.[1]. Note that
our definition oftcoh is twice theirs.

The normalized spectrum envelope[1] is given by

WsZ, V d =E
−`

`

dt g1sZ,tdeiVt, s3.12d

whereWsZ, V ddV is the fraction of the total energy radiated
(averaged over many pulses) in the frequency intervalV to
V+dV at distanceZ along the undulator. We plot the spectral

envelope forZ=8,13,15 in Fig. 7. The normalized fre-
quency deviation is defined byV;sv−vrd /2rvr. In the lin-
ear regime[Fig. 7(a)], the distribution has the exponential
form

WsZ, V d =
1

Î2psVsZd
expF − V2

2sV
2 sZdG , s3.13d

wheresVsZd=Îp /tcsZd. Near the maximum of the average
intensity [Fig. 7(b)], the distribution is narrower than case
(a), while near the first intensity minimum[Fig. 7(c)], the
distribution is broader exhibiting a slowly falling tail. In our
model, the spectral broadening at saturation is symmetric,
while in simulations it becomes asymmetric due to phenom-
ena we have not included.

In order to determine the distribution of instantaneous in-
tensity, we express the model in a form suitable for evalua-
tion by numerical simulation. In the region of exponential
gain before saturation, the linear SASE field can be ex-
pressed as in Eq.(1.3). We shall write

ALsZ,td >
A0

ÎZ/10
expFÎ3

2
sZ − 10dG

3o
j=i

Ne

expFi2pf rtj −
st − tjd2

4s t
2sZ/10d

S1 +
i

Î3
DG ,

s3.14d

where t= t /Tb and tj = tj /Tb are random numbers uniformly
distributed in the interval 0ø tj ø1. We choose the param-
eters

FIG. 5. The field correlation g1sZ,td=kAsZ,0dA*sZ,tdl
/ kuAsZ,0du2l as given in Eq.(3.8), plotted against dimensionless
time t, for dimensionless distance traveled along the undulator for
Z=8 (solid), Z=13 (dot-dashed), andZ=15 (dashed).

FIG. 6. The dimensionless coherence timetcohsZd (solid curve)
as computed from Eq.(3.11) plotted against the dimensionless dis-
tanceZ traveled along the undulator. The stars represent(twice the)
values read from Fig. 6.20 of Ref.[1].

FIG. 7. The spectrum envelopeWsZ, V d, as given in Eq.(3.12),
plotted against dimensionless frequencyV, for dimensionless dis-
tance traveled along the undulator forZ=8 (solid), (b) Z=13 (dot-
dashed), and(c) Z=15 (dashed).
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Ne = 5000, f r ; vrTb/2p = 500.1, st ; st/Tb = 0.0035,

A0 = 0.034.

An overallZ-dependent phase factor that does not affect our
results is neglected. The value of the constantA0 is deter-
mined by the condition that the linear intensity atZ=10
agrees with Eq.(3.4); i.e.,

kuALs10,tdu2l = A0
2Î2pNest = iavs10d = 0.050. s3.15d

The value of the FEL parameterr is found by requiring that
the coherence timeÎ3pst in the linear approximation be
given by Eq.(3.5):

tcs10d = 2rvrTbst
Î3p =Î20p

3Î3
. s3.16d

It follows that 2r=0.10.
The nonlinear fieldA is determined from Eq.(3.1) in

terms of the linear fieldAL of Eq. (3.14). Choosing an en-
semble of 500 sets of random numbershtj , j =1, . . . ,Nej, we
simulate multiple SASE pulses. The numerical results ob-
tained in this manner agree with the analytic results pre-
sented in Figs. 3–7. In addition, we have determined the
distributionpsQd of the ratio of the instantaneous intensity to
the average intensityQ= Istd / kIl, and the distributionpsSd of
the ratio of the spectral intensity to the average spectral in-

tensity S=kĨsvd / Ĩsvdl, for Z=11,12,13(see Fig. 8). At Z
=11, the distributionpsQd is close to the exponential form
exps−Qd, which holds in the linear regime. AtZ=12, the
distribution deviates from exponential, with the smaller val-
ues of Q suppressed. The model distribution is in good

agreement with Fig. 6.14 of Ref.[1]. At Z=13, the lower
values ofQ are more strongly suppressed than in the numeri-
cal simulations of Ref.[1] and the strict upper limit on the
model intensity introduces an artificial cutoff at largerQ.
This clearly illustrates the limitation on the validity of the
model as one goes deeper into saturation.

One of the most striking results of Ref.[1] is that the
intensity observed after a monochromator is described by the
exponential distributionpsSd=exps−Sd, even after saturation.
This is also true in our model, as seen in Fig. 8. Before
saturation, the Fourier transform of the radiation field is a
sum of terms, each of which depends on the arrival time of a
single electron. The exponential distribution is a conse-
quence of the Central Limit Theorem. After saturation, the
Fourier transform of the field is no longer a sum of terms
depending on the arrival time of a single electron. However,
it is comprised of a sum of terms, each one the contribution
of a single temporal spike. Since the time of a spike is ran-
dom, the Fourier transform of the field has the form of a sum
of terms possessing a random phase relative to one another.
If the number of spikes is large, then the Central Limit Theo-
rem again predicts an exponential distribution. In the case of
our simulation, each of the 500 pulses contains, on average,
65 temporal spikes.

IV. CONCLUSIONS

In the linear region before saturation, the statistical prop-
erties of the SASE radiation are determined from quite gen-
eral considerations based on the Central Limit Theorem
[1,4]. When the nonlinear effects associated with saturation
are important, the Central Limit Theorem no longer applies
and information on the statistical behavior comes from nu-
merical solution[1] of the time-dependent FEL equations. In
this paper, we have considered a model that provides a good
approximation to the statistical behavior of SASE early in
saturation. In this model, the statistical properties of the non-
linear field are expressed in terms of those of the linear field.

Whereas the scaling relation(1.4) for amplification of a
monochromatic wave is a precise asymptotic relation for
large Z, the model(1.6) for SASE relies on an additional
approximation of limited validity. Slippage is taken into ac-
count in the linear approximationALsZ,td, but not in the
functionhsjd describing saturation. Some justification for us-
ing our model to describe the initial saturation process is as
follows: Early in saturation, the SASE pulse is comprised of
temporal spikes[9] having widths equal to a few cooperation
lengths slr /4prd. The field amplitude at this point is still
accurately described by the linear approximation. As the
electrons travel several more gain lengths down the undula-
tor, the additional slippage is on the order of the coherence
length, so that the energy transfer between the electrons and
field may take place in a manner similar to the steady state
case, and the model(1.6) can provide a useful description.
However, as the electrons continue further along the undula-
tor, the slippage exceeds the original coherence length and
the model can be expected to lose validity.

The model has no free parameters and provides a good
description of the statistical properties of SASE early in satu-

FIG. 8. HistogramspsQd and psSd of the normalized instanta-
neous intensityQ= Istd / kIl and normalized spectral intensityS

= Ĩsvd / kĨsvdl, at positionsZ=11,12,13 along the undulator. Stars
represent values of the distribution of instantaneous intensitypsQd
as read off of Fig. 6.14 of Ref[1].
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ration. Agreement with numerical simulations based on the
time-dependent FEL equations is found out to aboutZ=14
for the average intensity(Fig. 3), field correlation function
(Fig. 5), and coherence time(Fig. 6), and out to aboutZ
=12 for the distribution of normalized instantaneous inten-
sity (Fig. 8). In saturation, the radiation observed after a
monochromator continues to be described by the exponential
distribution, as found in Ref.[1].

A key limitation of the model is that the peak spike inten-
sity saturates at the “steady state” value given by the solution
of the single-frequency equations. The model does not in-
clude effects due to frequency chirping[10] in the spikes,
which make possible higher peak saturation values. As pres-
ently formulated, the model cannot describe the asymmetric
broadening of the spectrum associated with the sideband in-
stability.
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APPENDIX A: DERIVATION OF SCALING
EQUATION (1.4)

In Ref. [8], we derived the scaling equation(1.4) by ex-
pressing the solution of Eqs.(2.1)–(2.3) as a perturbation
expansion in the small parameter«, the initial value of the
radiation amplitudeAs0d=«. We summarize the derivation in
this Appendix. Without loss of generality, we consider«
!1 to be real. Expanding in powers of«, we write

usZ,u0,p0d = u0 + p0Z + «u1sZ,u0,p0d + «2u2sZ,u0,p0d + ¯ ,

sA1d

AsZd = «A1sZd + «3A3sZd + «5A5sZd + ¯ . sA2d

The constraints uns0d=un8s0d=0, snù1d, and A1s0d
=1, Ans0d=0, snù3d assure thatus0d=u0, u8s0d=p0, and
As0d=«. For an initially uniform, monoenergeticsp0=0d
electron beam, and a monochromatic electromagnetic wave,
the system is periodic, so that we can restrict our attention to
the interval 0øu0ø2p. ke−imu0l=dm,0, where dm,0 is the
Kronecker delta which equals unity form=0 and vanishes
for all mÞ0.

Equations(2.1)–(2.3) imply

u9 = − Aeiu − A*e−iu, sA3d

A- − iA = iA*ke−2iul − ku82e−iul . sA4d

The prime denotes the derivative with respect toZ. We insert
the expansions of Eqs.(A1) and (A2) into Eqs. (A3) and
(A4), and equate terms having equal powers of«. The first-
order amplitude has the well-known solution[1], A1sZd
=sesZ+e−s*Z+e−iZd/3, where s=sÎ3+id /2. There are three

modes: growing, decaying, and oscillating. ForZ@1, the
exponentially growing mode dominates, i.e.,«A1sZd
<ALsZd;s« /3d expssZd, and the perturbation coefficientsun

andAn have the form

«nunsZ,u0d = o
k=0

n

bsn,n − 2kdAL
n−ksZdAL

*ksZdeisn−2kdu0

sn ù 1d, sA5d

and

«2m+1A2m+1sZd = asmdALsZduALsZdu2m smù 0d, sA6d

wherebsn,n−2kd andasmd are complex constants indepen-
dent ofZ, determined recursively from Eqs.(A3) and (A4).
We know thatas0d=1, we findu1,u2 from Eq. (A3) andA3

from Eq. (A4). Next, u3,u4 are determined from Eq.(A3).
Once this is accomplished,A5 is found from Eq.(A4). In
general, suppose we know u1,u2, . . . ,u2m and
A1,A3, . . . ,A2m+1, then u2m+1 and u2m+2 can be determined
from Eq. (A3), and thenA2m+3 can be found from Eq.(A4).

It is seen from Eqs.(A2) and (A6) that the radiation am-
plitude can be expressed in terms of the linear solution
ALsZd=s« /3dexpssZd, as

AsZ;«d > ALsZdhfuALsZdu2g sZ @ 1d, sA7d

with

hsjd = o
m=0

`

asmdj m. sA8d

Using MATHEMATICA , we have computed[8] the coefficients
as1d , . . . ,as12d of the power series in Eq.(A8). It was found
that after the first few values ofn, the argument of the ratio
asnd /asn−1d remains close to 2.397 rad, and the magnitude
of the ratio also varies slowly. The variation of the magni-
tude is further reduced if we multiply byn/ sn−1/2d. These
results suggest that there exists an inverse square root branch
point at j0>exps−i2.397d /0.354. This singularity limits the
radius of convergence of the power series in Eq.(A8). There-
fore, in order to use it to study saturation, we need to carry
out an analytic continuation. In Ref.[8], we analytically con-
tinued the Taylor series by the use of Pade’ approximate.

The numerical calculation of the first twelve coefficients
suggest that the Taylor series in Eq.(8) has a finite radius of
convergence and hence defines the functionhsjd. This dem-
onstrates the validity of the scaling relation(1.4).

APPENDIX B: DERIVATION OF EQ. (3.8)

In the linear regime, let us introduce the normalized field
amplitude asZ,td;ALsZ,td /ÎkuALsZ,tdu2l. The joint prob-
ability psxa,ya,xb,yb;Z,ta−tbd that the normalized ampli-
tude has the valuesasZ,tad=xa+ iya=ÎQa eifa and asZ,tbd
=xb+ iyb=ÎQb eifb at fixed positionZ along the undulator,
but at different timesta,tb, is given by[4]
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psxa,ya,xb,yb;Z,ta − tbd

=
1

p 2s1 − babd
expF− xa

2 − ya
2 − xb

2 − yb
2 + 2uabsxaxb + yaybd + 2vabsxayb − xbyad

1 − bab
G , sB1d

where

kasZ,tada*sZ,tbdl = uab + inab = Îbab eicab. sB2d

Using the approximate expression of Eq.(3.1) for the
nonlinear field amplitude, the correlation function can be
written in the form

kAsZ,tadA*sZ,tbdl

=E dxadyadxbdybpsxa,ya,xb,yb;Z,ta − tbd

3iavsZdÎQaQb eisfa−fbdhfiavsZdQagh*fiavsZdQbg ,

sB3d

whereiavsZd is the average intensity in the linear approxima-
tion, given in Eq.(3.4). We change the integration variables
to Qa,Qb,fa,fb, and carry out the integrations in(B3) over
the phase angles to obtain Eq.(3.8):

kAsZ,tadA*sZ,tbdl

= eicabE dQadQbP1sQa,Qb;Z,ta − tbd

3ÎQaiavsZdQbiavsZd hfQaiavsZdgh*fQbiavsZdg ,

sB4d

where P1 was defined in Eq.(3.9). When bab is approxi-
mated by Eq.(3.10), cab=0.
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