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Model for nonlinear behavior in the self-amplified spontaneous-emission free-electron laser
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We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron
laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output
radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and YUrkev
Physics of Free Electron LasefSpringer-Verlag, Berlin, 2000, we find that the model provides a good
description of the average intensity, field correlation function, and coherence time, but underestimates the
intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.
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I. INTRODUCTION dom arrival time of thgth electroncT, is the electron bunch

The self-amplified spontaneous-emission free-electron Ial_ength, and is the group velocity of each wave packet. The

ser(SASE FEL starts up from the shot noise in the electron fharfﬁtﬁ% yva\r/]e paCkethId(;@‘zll(ﬁU‘”)a whhere T
beam[1—4]. The output is narrow-band chaotic radiation and=®rV3V3p/k,z is the SASE bandwidt2,3] andp the FEL

requires a statistical description. In the linear region of exParameter[7]. The coherence timgl,4] is Teon= /o,
ponential growth[1-7] before saturation, the statistics are = Y370t In this paper, we are considering a flat-top electron
determined from the Central Limit Theoref,4]. In the b_unch with duratlo_nTb>Tcoh, and we use the dlmens!onless
nonlinear saturation region, the statistics are not so easil{fiStanceZ=2pk z, time r=2p[ (k +k,)z- wt], and amplitude
described. A comprehensive and illuminating sttlyof the ~ A=E/\pNgyomc/eo (mks unitd, wheren is the electron
nonlinear statistics was carried out by numerical solution oflensity andy, the electron energy in units of the rest mass.
the time-dependent FEL equations. In this paper, we consider In the case of a monochromatic input wa&ec. 1), the

a simplified model for the nonlinear stochastic SASE field@mplified output field has the for{ig]

and compare its predictions with the results of Réi. In — 2 s

this model, the statistical properties of the nonlinear field are A = AL(Z)hUAL(Z)' ] (z>1), (1.4
expressed in terms of those of the linear field. The modelvhere
provides a good description of the average intensity, field L B i
correlation function, and coherence time, but it underesti- _ v I
mates the intensity fluctuation. Asymmetric spectral broad- AlZ)= 3A(O)eXp[< 2 " 2)2}

ening phenomena are not included in the model. ) _ . ) . i
Ignoring the transverse dependence, the SASE electriS the solution to the linearized single frequency equations.

(1.5

field can be expressed in the form ?I'he'ia\n(i(';i)aivlalue of the radiation field is assumed to be small,
ie., <1.
E(zt) = A(z.t)explik, z—iw, t), (1.1 In this paper, we introduce a simplified mod&ec. Il))

wherez represents the location along the undulator at WhicHcor SASE saturation by considering an ansatz for the nonlin-

the SASE is observed aridepresents the temporal position ear raQ|at|0n field, expressing it in terms of the linear SASE
: . X X field via

in the radiation pulse. For an undulator with periag

=2mlk, and magnetic field strength paramekerthe reso- AZ,7) = AL(Z,T)h[|AL(z, T)|2] (z>1), (1.6)

nant frequency is . ) o
whereA, (Z, 7) is the linear approximatiofiL.3) to the SASE

amplitude. The function(§) is that appearing in Eq1.4)
and it can be evaluated by direct numerical integration of the

) ) ) ~ single frequency FEL equationsee Sec. )l The model
In the linear region before saturation, the SASE power in-SASE intensity is

creases exponentialljl—7] and the slowly varying ampli-
tude can be approximated g,3] AZDP=1[|AZD?] Z>1), (1.7)

Ne (t—t; - z/vy)? i wherel (&) =¢£|h(£)|%. From Egs(1.6) and(1.7), the statistical
A (zt) = A2 > expl i, ti-————————1+—= properties of the nonlinear SASE field can be determined in
j=1 40't2 V3 terms of the known statistical properti€k,4] of the linear
(1.3 approximationA, (Z, 7).
Whereas the scaling relatiqid.4) for amplification of a
Here, N, is the total number of electrons in the bunéh(z) monochromatic wave is a precise asymptotic relation for
contains the exponential growth factoss@,<T, is the ran-  large Z, the ansatz1.6) for SASE relies on an additional

_ 2k,cy?
T 1+KY2

(1.2

w, =K,
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FIG. 1. (a) The dimensionless intensibi(2)|, as computed from the numerical solution of E@1)~(2.3) for the two initial conditions:
A(0)=.003(solid) andA(0)=.0003(dasheg, versus the dimensionless distarxt&b) The solid curve ina) has been translated to the right
by AZ=2.658 and now lies precisely over the dashed curve, as predicted by the scaling relatiof28)Eq.

approximation of limited validity. Slippage is taken into ac- 1 V3 i
count in the linear approximatioA (Z,7), but not in the AL(Z)=§A(0)9X 5 13)?2 (2.5
functionh(¢) describing saturation. Some justification for us-

ing our model to describe the initial saturation process is ag the solution to the linearized single-frequency FEL equa-
follows: Early in saturation, the SASE pulse is comprised oftions. Equation(2.4) is valid as long as the initial value of

temporal spike$9] having widths equal to a few cooperation the radiation field is smallA(0)<1. The radiation intensity
lengths (\,/4p). The field amplitude at this point is still s given by

accurately described by the linear approximation. As the

electrons travel several more gain lengths down the undula- IAe,2)>=1(&) = Eh()> (2> 1), (2.6)
tor, the additional slippage is on the order of the coherence

length, so that the energy transfer between the electrons aehere

field may take place in a manner similar to the steady state

case, and the ansatt.6) can provide a useful description. ¢
However, as the electrons continue further along the undula-
tor, the slippage exceeds the original coherence length and
the model can be expected to lose validity.

[N

A0)2e, 2.7)

It follows from Eg. (2.6) that for largeZ, the intensity

does not depend o&(0) andZ independently, but only in the

combination specified in E@2.7). Therefore, a change in the

Il. AMPLIFICATION OF THE MONOCHROMATIC WAVE initial value of the radiation fieldA(0)] corresponds to a

. ) translation inZ. The validity of this scaling is demonstrated
The scaled equationf?] for the evolution of a one- jn Fig. 1, where we plot the intensity determined from the

dimensional electron distribution and a monochromatic ranumerical solution of the FEL Eqe2.1)~2.3) for two initial

diation field are conditionsA(0)=.0003 andA(0)=.003. The equations were
solved numerically usingIATHEMATICA with 1000 electrons,
do, initially equally spaced in phase in the intervak®; < 2. It
E =0 2.9 is seen that once the exponential gain has been established,

the two intensities differ only by a translation i by Z;
-Z,=(2/\3)In[A,(0)/A,(0)]=2.658.
dp, _ _ The functionh(¢) can be evaluated by direct numerical
—=-Adli-A¢eY, (2.2 integration of the single frequency equations. Bef(Z) be
the solution of EQgs.(2.1)—<2.3) for the initial condition
As(0)=es. It follows  that VEN(H=A{Zo(H]

A xexd-iZo(€)/2], with Zo(&)=[In &+In(9/e2)1/\3. In Fig.
4z =(e), (2.3 2, we plot the magnitude and phase of the function
where ej:(kr+kw)z_wrtj(z) is the phase of th¢th electron I1l. MODEL FOR NONLINEAR SASE STATISTICS

relative to the radiation ang;=(y~o)/pyo is its (scaled The simplified model for SASE saturation is defined by
energy deviation. The bracket represents an average over the, -cat> for the nonlinear radiation field

electron phases in the intervakdy, < 2.

We have showii8] (see Appendix Athat the solution to AZ D =AZDAZD?] Z>1), (3.1
Egs.(2.1)«2.3) can be expressed in the form

whereA, (Z, 7) is the linear approximatio(i.3) to the SASE

AZ) =A@NIA2F] zZ=1), (2.4)  amplitude. The functiom(¢) is that presented in Fig. 2, de-
termined by direct numerical integration of the single fre-
where quency FEL equations. The model SASE intensity is
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FIG. 2. We plot(a) the magnitude an¢b) the
phase of the scaling functioh(¢) versusé. In
order to show the behavior over a wider domain,

we plot(c) VE|h(&)| and(d) ardh(¢)] versus the
natural logé).
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IAZ,DP=I[|AZ D] Z=1), (3.2

wherel(¢) is defined in Eq(2.6) and can also be evaluated

<|A(Z,T)|2">:JdQeX|0(— QI"Qix(2)].  (3.6)

by integrating the single frequency FEL equations. From
Egs.(3.1) and(3.2), the statistical properties of the nonlinear The intensity fluctuation is given by
SASE field can be determined in terms of the known statis-

tical propertieq1,4] of the linear approximatior\ (Z, 7).

Within the linear approximation, the field correlation is

given by
* . —’77(7' —7')2
(AZ m)A(Z,7)) = '@(Z)EXP{W] )
(3.3
where
_ exp(\32)
(2 =(A(Z,7)]?) = —=—— 3.4
2@ =(Az ) =T (3.4
is the average intensity and
74(2) =\272/(313) (3.5

the coherence time\,. is the number of electrons in a coop-
eration length\,/4mp. The bracketg ) represent the average
over the electron arrival timeshot noisg

IAZ,DI*) = (|AZ,7]})?
(|AzZ,?)?

In Fig. 3, we plot the average intensityA(Z, 7)|?) versus
Z, as determined from E@3.6). In this figure and those that
follow, we have chosen the number of electrons in a coop-
eration length to b&l.=1.5x 10". In Ref.[1], the definition
of N, is twice ours; hence, oud.=1.5x 10’ corresponds to
their choice ofN.=3x 10". The intensity, shown as the solid
curve in Fig. 1, is in good agreement with Fig. 6.13 of Ref.
[1] out to aboutZz=14. After this point, their simulations are
dominated by spectral broadening phenomena not included
in the simplified model. The slight shift of our result to larger
Z as compared with the result of R¢ll], may be due to a
difference in the treatment of shot noise in our analytic ap-
proximation and their numerical simulation. The intensity
fluctuationoy(2) is presented in Fig. 4. There is significant
disagreement in the results. The fluctuation at the intensity
maximum(at Z=13) is about 25%, which is one-half of the

0?(2) = <

(3.7

Since the SASE intensity in the linear regime is describedsalue determined in the simulatioiig. 6.15 of Ref.[1]).

by the exponential distributiofil], (1/{I))exp(-1/{I})), we
can use Eq(3.2) to express the average of thth power of
the nonlinear SASE intensity in the form

1 e
E*o.s *\\
. *
3 0.6 / :
So.
=}
=02 *

0

FIG. 3. The average dimensionless SASE intensitgolid) as

This is due to a limitation of our approximation, which will
be discussed in more detail later.

Fluctuation

FIG. 4. The intensity fluctuation, (solid) as determined from
Eq.(3.7), plotted versus the dimensionless distaAdeaveled along

calculated from Eq(3.6) with n=1. The stars represent values of the undulator. The stars represent values of the fluctuation read from

the intensity read from Fig. 6.13 of RdfL].

Fig. 6.15 of Ref[1].
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Correlation

FIG. 5. The field correlation g(Z,7=(A(Z,0)A"(Z,7))
[{|{A(Z,0)|? as given in Eq.(3.8), plotted against dimensionless
time 7, for dimensionless distance traveled along the undulator fo
Z=8 (solid), Z=13 (dot-dashej] andZ=15 (dashegl

The radiation field correlation function is given ligee
Appendix B

(A(Z, A (2, 7))
= (IAZ,0*)(Z, 72~ m)

=JandeP1(Qa:QbrzyTa_ Tb)

X \Qal 2(2) Qi a (2N Qui (2 I [ Quin(2)], (3.8
where
- Qa - Qb
ex —1—,8 ex —1—ﬁb
P1(QaQuiZ, 7a= 1) = ;b_B A 2
x| 1(—2\fib§fb) , (3.9
B = <|A|_(Z, Ta)|2|AL(21 Tb)|2> _ 1 = eXF{ - 71-(Ta_ Tb)2:|
7 (IAUZ )P(AZ )P A2 |
(3.10

The integrand in Eq(3.8) is symmetric inQ, andQ,, hence

the model field correlation is real, whereas the precise result

is a complex quantity. In Fig. 5, we show the field correlation

before and during saturation. Our results are seen to agree

with Figs. 6.16 and 6.17 of Refl] upon noting that our
definition of the scaled time is twice theirs.

Knowledge of the field correlation enables us to comput
the coherence timgl] defined by

7'coh(Z)Ef_ dT‘gl(Z:T)|2- (3.11

The coherence time is plotted in Fig. 6. The results are seen

to be in good agreement with Fig. 6.20 of Rgff]. Note that
our definition of 7.y, is twice theirs.
The normalized spectrum envelofH is given by

W(Z, Q)= J drg,(Z, 7€, (3.12
whereW(Z, Q)d() is the fraction of the total energy radiated

(averaged over many pulgeis the frequency interval) to
Q+dQ) at distance&Z along the undulator. We plot the spectral

(]
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FIG. 6. The dimensionless coherence timg,(Z) (solid curve
as computed from Eq3.11) plotted against the dimensionless dis-
tanceZ traveled along the undulator. The stars repre@mvite the
values read from Fig. 6.20 of Rdfl].

envelope forz=8,13,15 inFig. 7. The normalized fre-
quency deviation is defined iy =(w—w,)/2pw,. In the lin-
ear regime[Fig. 7(@)], the distribution has the exponential

form
o

where o(Z)=+'m/ 7.(Z). Near the maximum of the average
intensity [Fig. 7(b)], the distribution is narrower than case
(a), while near the first intensity minimurfFig. 7(c)], the
distribution is broader exhibiting a slowly falling tail. In our
model, the spectral broadening at saturation is symmetric,
while in simulations it becomes asymmetric due to phenom-
ena we have not included.

In order to determine the distribution of instantaneous in-
tensity, we express the model in a form suitable for evalua-
tion by numerical simulation. In the region of exponential
gain before saturation, the linear SASE field can be ex-
pressed as in Eq1.3). We shall write

-0?

1
W(Z, Q) =— 202(2)

V2moq(2)

}, (3.13

- \E
A(ZY)=—— exp[ —(Z- 10)]
\VZ/10 2
Ne C o (t-t)? i
x> exp| i2nf tj-———(1+—| |,
j=i 40 42110 3

(3.19

wheret=t/T, and{j=t;/T, are random numbers uniformly
distributed in the interval &tj<1. We choose the param-
eters

Spectrum Envelope

FIG. 7. The spectrum envelop&Z, (1), as given in Eq(3.12),
plotted against dimensionless frequeri@y for dimensionless dis-
tance traveled along the undulator =8 (solid), (b) Z=13 (dot-
dasheg and(c) Z=15 (dasheql
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0.8 7=11 agreement with Fig. 6.14 of Refl]. At Z=13, the lower
0.6 0.6 =1t values ofQ are more strongly suppressed than in the numeri-
go . %o 4 cal simulations of Ref[1] and the strict upper limit on the
0.2 0.2 model intensity introduces an artificial cutoff at larg®r
' . o This clearly illustrates the limitation on the validity of the
0 05 1 1.5 2 2.5 3 4 model as one goes deeper into saturation.
0.6 ° 0.8 One of the most striking results of Rgfl] is that the
0.5 * 0.6 peta intensity observed after a monochromator is described by the
__ 0.4 * z=12 a exponential distributiop(S)=exp(—S), even after saturation.
2o = This is also true in our model, as seen in Fig. 8. Before
o1 0.2 saturation, the Fourier transform of the radiation field is a
Ol zfs . 0 = sum of terms, each of which depends on thg arr_ival time of a
Q single electron. The exponential distribution is a conse-
3 0.8 quence of the Central Limit Theorem. After saturation, the
2.5 £=13 0.6 2o13 Fourier transform of the field is no longer a sum of terms
5, 52 o4 _de_pendlng.on the arrival time of a single electron. Hoyveyer,
& o it is comprised of a sum of terms, each one the contribution
osf <, 0.2 of a single temporal spike. Since the time of a spike is ran-
e PR — O dom, the Fourier transform of the field has the form of a sum
Q s of terms possessing a random phase relative to one another.

) o If the number of spikes is large, then the Central Limit Theo-
FIG. 8. Histogram9(Q) and p(S) of the normalized instanta-  rem again predicts an exponential distribution. In the case of

neous intensityQ=I(t)/(I) and normalized spectral intensi§ o, simulation, each of the 500 pulses contains, on average,
=l(w)/{l(w)), at positionsZ=11,12,13 along the undulator. Stars 65 temporal spikes.

represent values of the distribution of instantaneous inteps®)

as read off of Fig. 6.14 of RdfL]. CONCLUSIONS
IV. NCLUSION

Ne=5000, f, =, Ty/27m=500.1, o= 0/T,=0.0035, In the linear region before saturation, the statistical prop-
A= 0.034 erties of the SASE radiation are determined from quite gen-
' ' eral considerations based on the Central Limit Theorem
An overall Z-dependent phase factor that does not affect outl.,4]. When the nonlinear effects associated with saturation
results is neglected. The value of the constagtis deter- ~ are important, the Central Limit Theorem no longer applies
mined by the condition that the linear intensity 2810  and information on the statistical behavior comes from nu-
agrees with Eq(3.4); i.e., merical solution 1] of the time-dependent FEL equations. In
this paper, we have considered a model that provides a good
approximation to the statistical behavior of SASE early in
saturation. In this model, the statistical properties of the non-
linear field are expressed in terms of those of the linear field.
Whereas the scaling relatiqd.4) for amplification of a
monochromatic wave is a precise asymptotic relation for
large Z, the model(1.6) for SASE relies on an additional
N 20w ' . . T . . .
7:(10) = 2pw, Tyo\3m= | —=. (3.16 approximation of limited validity. Slippage is taken into ac-
3v3 count in the linear approximatioA, (Z,7), but not in the
functionh(£) describing saturation. Some justification for us-
The nonlinear fieldA is determined from Eq(3.1) in ing our. modellto descri_be the initial saturatiqn process is as
terms of the linear field\  of Eqg. (3.14). Choosing an en- follows: Ear!y In saturgtlon,_the SASE pulse is compnseq of
semble of 500 sets of random numbg¢isj=1, ... Ng}, we Itempﬁral spikeg9)] hﬁv'?.g |W|dths|¢qual to ahf.ew cqopgratlgl>ln
simulate multiple SASE pulses. The numerical results ob-S"9t S(A/Amp). The field amplitude at this point is st
accurately described by the linear approximation. As the

tained in this manner agree with the analytic results pre-I ¢ ¢ | I in lenaths d th dul
sented in Figs. 3—7. In addition, we have determined th&'SCrons travel Several more gain lengths down the unduia-

distributionp(Q) of the ratio of the instantaneous intensity to tor, the additional slippage is on the order of the coherence
the average intensit®=1(t)/(l), and the distributiomp(S) of I_ength, so that the energy fransfer pet_ween the electrons and
the ratio of the spectral intensity to the average spectral intleld may take place in a manner similar to the steady state
] - s i case, and the modél.6) can provide a useful description.

tensity S=(I(w)/1(w)), for Z=11,12,13(see Fig. At Z  However, as the electrons continue further along the undula-
=11, the distributionp(Q) is close to the exponential form tor, the slippage exceeds the original coherence length and
exp(—-Q), which holds in the linear regime. AZ=12, the the model can be expected to lose validity.

distribution deviates from exponential, with the smaller val- The model has no free parameters and provides a good
ues of Q suppressed. The model distribution is in gooddescription of the statistical properties of SASE early in satu-

(|AL(10.1)[) = AZ\V27NgT, = i,,(10) = 0.050. (3.15)

The value of the FEL parametgris found by requiring that
the coherence time/3wo; in the linear approximation be
given by Eq.(3.5):

It follows that 2p=0.10.
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ration. Agreement with numerical simulations based on thenodes: growing, decaying, and oscillating. Ro¥ 1, the
time-dependent FEL equations is found out to aboutl4  exponentially growing mode dominates, i.egAi(2)
for the average intensitgFig. 3), field correlation function = A, (Z)=(e/3) exp(s2), and the perturbation coefficients
(Fig. 5), and coherence timéFig. 6), and out to abouZ  andA, have the form

=12 for the distribution of normalized instantaneous inten-

sity (Fig. 8). In saturation, the radiation observed after a n X ‘
monochromator continues to be described by the exponential  "6,(Z, 6p) = >, b(n,n — 2k) A *(2) A K(2)e "%
distribution, as found in Ref.1]. k=0

A key limitation of the model is that the peak spike inten- (n=1), (A5)

sity saturates at the “steady state” value given by the solution
of the single-frequency equations. The model does not ingng
clude effects due to frequency chirpii@O] in the spikes,
which make possible higher peak saturation values. As pres- g2™1A,1(2) =a(m)A (DA (2™ (m=0), (A6)
ently formulated, the model cannot describe the asymmetric
broadening of the spectrum associated with the sideband ifjyhereb(n,n-2k) anda(m) are complex constants indepen-
stability. dent ofZ, determined recursively from EqeA3) and (A4).
We know thata(0)=1, we find 0y, 6, from Eq.(A3) and A;
ACKNOWLEDGMENTS from Eg. (A4). Next, 65,6, are determined from EqA3).
| wish to thank Dr. Z. Huang for enlightening comments Once this is accomplished; s found from Eq.(A4). In

. _ S eneral, suppose we know 6q,6,,...,6,, and
and discussion of results from his time-dependent FEL code%\l,As, Aot then Oy and By, can be determined
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for its hospitality during the course of this work. This work It is seen from Eqs(A2) and (A6) that the radiation am-
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APPENDIX A: DERIVATION OF SCALING AZ;e)=ANA D[] @z>1), (A7)
EQUATION (1.4)
In Ref. [8], we derived the scaling equatigh.4) by ex- with
pressing the solution of Eq$2.1)—(2.3) as a perturbation -
expansion in the small parameter the initial value of the _ m
radiation amplitudeA(0) =e. We summarize the derivation in h(¢) = mzzo ame™. (AB)
this Appendix. Without loss of generality, we consider
<1 to be real. Expanding in powers ef we write Using MATHEMATICA , we have computefB] the coefficients
a(1),...,a(12) of the power series in EGA8). It was found
(Z, 00,P0) = b + PoZ + £01(Z, 00, Po) + 8°02(Z,00,P0) + ***,  that after the first few values of, the argument of the ratio

(A1) a(n)/a(n—1) remains close to 2.397 rad, and the magnitude
of the ratio also varies slowly. The variation of the magni-
AZ) = eA(Z) + £3A4(2) +e5As(2) + ---.  (A2)  tude is further reduced if we multiply by/(n—1/2). These
results suggest that there exists an inverse square root branch
The constraints 6,(0)=6,(0)=0, (n=1), and Ay(0)  point at&,=exp(-i2.397/0.354. This singularity limits the
=1, Ay(0)=0, (n=3) assure that(0)=6,, 6'(0)=py, and  radius of convergence of the power series in @@R). There-
A(0)=e. For an initially uniform, monoenergeti¢py=0)  fore, in order to use it to study saturation, we need to carry
electron beam, and a monochromatic electromagnetic waveut an analytic continuation. In Rg®], we analytically con-
the system is periodic, so that we can restrict our attention ténued the Taylor series by the use of Pade’ approximate.

the interval Gs< gy<2m. (€M%)=4,,, where 8, is the The numerical calculation of the first twelve coefficients
Kronecker delta which equals unity fon=0 and vanishes suggest that the Taylor series in E8) has a finite radius of
for all m#0. convergence and hence defines the funchigf). This dem-
Equations(2.1)—«2.3) imply onstrates the validity of the scaling relati¢h4).
0 =-Ad’-Ael? (A3)

APPENDIX B: DERIVATION OF EQ. (3.8)

A" -IA=IA () - (%) (A4) In the linear regime, let us introduce the normalized field
The prime denotes the derivative with respecZitVe insert ~ amplitudea(Z, ) =A (Z,7)/\{|A.(Z,7)?). The joint prob-
the expansions of EqgAl) and (A2) into Eqgs.(A3) and  ability p(Xa,Ya,Xs,Yn;Z,7a= ) that the normalized ampli-
(A4), and equate terms having equal powerg: oThe first-  tude has the valuea(Z, 7,) =X, +iy,= VQ, €% anda(Z, n,)
order amplitude has the well-known solutidd], A;(2) =x,+iyp=\VQ, €% at fixed positionZ along the undulator,
=(esZ+eS'Z+¢72)/3, where s=(\3+i)/2. There are three but at different timesr,, 7, is given by[4]
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- yﬁ + 2uab(XaXb + Yayb) + 2Ualb(xayb B bea)

__ 1 p{—xef-yi—X?)
=— ex
w (1_Bab)

where

(a(Z,7)a (Z,1)) = Uap+ i vap= VBap €720, (B2)

Using the approximate expression of E®.1) for the
nonlinear field amplitude, the correlation function can
written in the form

(A(Z, m)A(Z,7))
= f AXa0Ya0XAYoP(Xa, Yar Xon Yo Z, Ta = T)

Xiap(Z)VQaQp € a0 h[i o, (2)Qaln[ia,(2) Qs
(B3)

be

) Bl
1_:8ab ( )

wherei,,(Z) is the average intensity in the linear approxima-
tion, given in Eqg.(3.4). We change the integration variables
to Qa,Qp, ¢4, P, @nd carry out the integrations (B3) over
the phase angles to obtain E§.8):

(AZ, A (Z, 7))
= ilﬂabJ andePl(Qav QpiZ, 74— 7'b)

4\ D032 D) W Q@] [ 2],
(B4)

where P, was defined in Eq(3.9). When B,, is approxi-
mated by Eq(3.10), ¢,,=0.
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